Direct physical exfoliation of few-layer graphene from graphite grown on a nickel foil using polydimethylsiloxane with tunable elasticity and adhesion.
نویسندگان
چکیده
We firstly introduce a facile method for the site-specific direct physical exfoliation of few-layer graphene sheets from cheap and easily enlargeable graphite grown on a Ni foil using an optimized polydimethylsiloxane (PDMS) stamp. By decreasing the PDMS cross-linking time, the PDMS elasticity is reduced to ∼52 kPa, similar to that of a typical gel. As a result of this process, the PDMS becomes more flexible yet remains in a handleable state as a stamp. Furthermore, the PDMS adhesion to a graphite/Ni surface, as measured by the peel strength, increases to ∼5.1 N m⁻¹, which is approximately 17 times greater than that of typical PDMS. These optimized properties allow the PDMS stamp to have improved contact with the graphite/Ni surface, including the graphite wrinkles. This process is verified, and changes in surface morphology are observed using a 3D laser scanning microscope. Under conformal contact, the optimized PDMS stamp demonstrates the site-specific direct physical exfoliation of few-layer graphene sheets including mono- and bi-layer graphene sheets from the graphite/Ni substrate without the use of special equipment, conditions or chemicals. The number of layers of the exfoliated graphene and its high quality are revealed by the measured Raman spectroscopy. The exfoliation method using tunable elasticity and adhesion of the PDMS stamp can be used not only for cost-effective mass production of defect-less few-layer graphene from the graphite substrate for micro/nano device arrays but also for nano-contact printing of various structures, devices and cells.
منابع مشابه
Preparation and characterization of Graphene/Nickel Oxide nanorods composite
Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...
متن کاملPreparation and characterization of Graphene/Nickel Oxide nanorods composite
Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...
متن کاملA flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate.
We demonstrate the fabrication of a graphene/ZnO nanorod (NR) hybrid structure by mechanical exfoliation of ZnO NRs grown on a graphite substrate. We confirmed the existence of graphene sheets on the hybrid structure by analyzing the Raman spectra and current-voltage (I-V) characteristics. The Raman spectra of the exfoliated graphene/ZnO NR hybrid structure show G and 2D band peaks that are shi...
متن کاملA Review on Thermal Exfoliation of Graphene Oxide
Exfoliation, i.e. individual separation of carbon sheets, is of great interest to produce single-layered graphene nanosheets. Chemical or thermal treatments are popular approaches to exfoliate graphite chunks. In general, these conventional methods are assisted with intercalation via covalent or non-covalent functionalization, expansion, and swelling, adsorption of organic molecules in gas phas...
متن کاملSynthesis of magnetic graphene-Fe3O4 nanocomposites by electrochemical exfoliation method
Superparamagnetic few-layer graphene nanocomposites (FLG- NCs) can be used for many technological applications, such as solar cells, batteries, touch panels and supercapacitors. In this work, we applied electrochemical exfoliation method as a simple, one step and economical technique to fabricate FLG- NCs. The fabricated Superparamagnetic FLG- NCs were characterized by X-ray diffraction (XRD), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 24 20 شماره
صفحات -
تاریخ انتشار 2013